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Computation of Propagation Characteristics
of Chiral Layered Waveguides

Gonzalo Plaza, Francisco Mesa, and Manuel Homenber, IEEE

Abstract—In this paper the authors present a systematic nu- different aspects about electromagnetic propagation in homo-
merical method to analyze multilayered linear chiral waveguides. geneous unbounded bi(iso/ani)sotropic media are considered
The Maxwell's equations are solved inside each layer and the in [6]-[11]. Propagation along closed waveguides homoge-

transversal fields at the top and bottom of the whole layered " . - . . ;
medium are then related. This relation, together with the use neously filled with biisotropic materials has been consid-

of the proper transversal impedance matrices, makes it possible €red for example in [12], [13]-[14]; parallel-plate waveguides
to obtain the dispersion relation of the waveguide. Since this homogeneously filled with biisotropic material are treated
technique is mainly numerical, the whole procedure is practically in [15] and inhomogeneously filled with these media in
independent of both the number of layer and linear properties [16], [17]; open chiroslab waveguides are studied in [18],

of the materials. In addition to the proper modes, the authors . il . . :
also show the behavior of the improper leaky modes of different [19]. In [20]-[22] waveguides with isotropic chiral materials

chiral waveguides. In all the analyzed cases and for the considered @nd gyrotropic properties (chiroferrites and chiroplasmas) are
ranges, the authors have found that the presence of chiral considered. A microstrip on a biisotropic substrate is analyzed
material does not substantially change the qualitative behavior jn [23].
of the dispersion relatipn, although .it pffers another parameter In this paper, the authors propose a systematic quasi-
to control the propagation characteristics of the waveguide. numerical method to analyze general laterally open
Index Terms—Chiral, spectral domain, planar wageguide. waveguides with layered media whose layers can exhibit linear
bianisotropic properties without restriction. One of the main
features of the method presented here is that the increasing
_ _ of the number of layers, as well as its complexity, hardly
I N THE PAST few years, the attention paid to the studysects its efficiency. Here, the technique of analysis used
1 of electromagnetic propagation in biisotropic and biang)ios the guidelines presented in [24], although the present
isotropic chiral media has increased notably. This increasig)k is now specifically focussed on the analysis of general
interest is raised by the potential applications of the Chirf’é{yered chiral waveguides, including some novel structures
ma'FeriaI as well as its_ theor_eticz_il and academic significanc‘c%mbining gyrotropic and chiral anisotropic properties. The
As is well known, a chiral object is one that cannot be brougBfonagation characteristics of the different structures are
into congruence with its mirror image by translation or rOtat'OEOmputed following a 4x 4 transition matrix scheme to
[1]. A collection of such objects is then characterized by righfy|ye the Maxwell's equations inside the bianisotropic layers.
or left handedness and, therefore, chirality means a lack ffis scheme has been used often in the past [24]-[27] as it
bilateral symmetry. The most outstanding properties of chirgls peen shown to be very suitable in dealing with general
media concerning the propagation of electromagnetic fields %rﬁisotropic materials.
reported to be their ability either for rotating the plane of po- Finally, the authors present the propagation characteristics
larization of an electromagnetic wave or for circular dichroisrgs ¢ome types of chiral waveguides. Specifically, the authors
[2]. Although today there are no known natural media showing, e analyzed the behavior of the propagation constants when
chiral properties at microwave and millimeter frequencies, @ me characteristic parameters are varied. The authors’ study
progress in the polymers science is expected to make thgse shown that the influence of the chirality parameters on the
media of common use in future technology (currently, thesg, equide characteristics in the analyzed range is similar to
media are manufactured by embedding polymers with chirgl,; provided by the usual varying of the dielectric permittivity

structure into a host dielectric media) [1], [3]. In this evenly, magnetic permeability. This study is extended to both the
many of the proposed devices whose performance lies on per and improper modes of the chiral waveguides.
chiral properties of the media could be built. A general survey

of chiral devices is reported in [3].
The electromagnetic propagation in chiral materials has ) . .
been extensively studied in the literature. General features ol this section, the authors present the theoretical treatment

the bi(iso/ani)sotropic materials are presented in [4], [5] ari@ @nalyze the planar multilayered waveguide shown in Fig.
1. Since the authors’ aim is to develop as general an analysis
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Since expressions (7) and (8) are algebraic, dgfland 4,
can be expressed in terms of the remaining components of the
fields in the following way:
H,=Y -E,+W- H, ()
E,=-YP H,+WP.E, (10)

whereE, = E,a, + E.a,,H, = H,a, + H_a_ (subscriptt
means transversal tg-direction), andY” and W are given by

Fig. 1. Multilayered waveguide including general bianisotropic materials. Y = 6yy(a - ﬁyt) ~ yyyt (11)
Wyygyy__ HyyCyy
(i.e., electric/magnetic walls, vacuum medium, periodically W = My = &yt) + Eyyliyt (12)
loaded interfaces,..). One of the possible ways of writing MyySuy = PyyCyy
the (.:onsfcituti_ve rglations for the most general bianisotropwith @ = —k,/wa, + k,/wa, and 7,; = Nyzds + My-az.
medium is given in [27], [28]: Similar expressions hold fa,;, &,:, andfi,;. Y” and WP
= Tyt Sy Y . .
1 stand for the dual of th& and W, respectively; that is, their
D=ep -E+ p &-H (1) expressions can be obtained directly from (11) and (12) using
1 the dual relations [6]
B:N0ﬁ1"H+_ﬁr'E (2) - —
¢ e (13)
where ¢ = 1/,/éo, & and fi,. are the relative dyadic § & =1

permittivity and permeability, and,. and 7, are the cross- Substituting (9) and (10) into the remaining row of Maxwell’'s

coupling dyads accounting for the_ chira_lity of the SUbStra@(ﬁuations in (4)—(5), the following matrix differential equation
(note that these four dyads are dimensionless and that c @btained for the transversal fields:

must be taken concerning the physical meaning.¢4], [29]).

The following time and spatial harmonic dependence are 9 gl‘ %1 gl E gl‘
H i e z o <12 22 . t — . z
assumed for the electromagnetic fields oy | 2, | = ~BP AP {HJ Jw[Q] H.
A(r,t) = A(y)e I (Razthez) piet (3) H, -Bp AP H.
. 14
although, the explicit time dependengé? will be suppressed k!
throughout. where
Using the constitutive relations (1)—(2), the Maxwell’s equa- _ _ ka - b _
tions for the curls inside each layer are Ar = — (= ey W5 1Y (15)
1 - _ k. = >
VXE= —jw </¢L0/¢_LT -H+ E 771’ . E) (4) AQ = TNzt — <; + 771;y) WD - NmyY (16)
. 1. _ ko -p -
V xH = jw eoa,-EJrEg,,-H . (5) By = ey Y5 A+ i+ pay W 17)
In view of the spatial dependence shown in (3), tfie By, = <2 +m;y>YD — Jizt — oy W. (18)
operator can be expressed in matricial form as w
0 k2 Note that[Q] is a 4 x 4 matrix. The corresponding dual
Vx = | —jk. 0‘ ﬁé! ) expressions ford and B arrays, denoted with superscript,
- 9 o can be obtained from (15)—(18) by means of (13) and the

ZD k. 0 ! :
oy additional dual relations

Using this operator, the second and fifth row equations in the Vv o yP

set (4)-(5) can be written as W o WP (29)
< .
_{jsz’” +Jk“/‘E - fjw(ﬁy ‘H j‘ﬁy "E) (7) After solving the matrix differential equation (14), the
—jkoHy + jhoH, = ju(&, - E +§, - H) (8) transversal fields at the top of thith layer can be written as
_ _ ' . a function of the transversal fields at the bottom of this layer:
where i, and, are defined as follows:
Et _ Et

Py = Ay - i = f1o(flyads + fyyay + fiy-a.) {HJT = (P]; - {HJB ‘ (20)

_ _ 1 KX T

My =3ay 1= g(”ywaw + gy Ry + 1y22s) where subscript®3 and 7" indicate bottom and top, respec-

. tively, and the[P]; matrix is given b
where a,, a,, anda. stand for the unit vectors along the y [Pl 9 y

cartesian axes. Similar expressions hold dprandé,. [P]; = exp(jw[Q]: 1) (21)



PLAZA et al. PROPAGATION CHARACTERISTICS OF CHIRAL LAYERED WAVEGUIDES 521

with h; being the height of the layer [24]. A similar study
for computing the transition matrifP];, but in a different
context, is presented in [27].

In order to find the dispersion equation for the waveguide
and considering that the transversal fields must be continuot
at the interfaces, (20) is applied repeatedly starting from th
bottom layer of the multilayered structure up to the upper layer
Although the following mathematical steps were partially
exposed in [24], the authors will detail some of them for the e
sake of completeness. In this way, the top transversal fiel",f1
of the guide can be related to the bottom transversal field ¢

follows:
AL

where subscriptd$3 and7” now means bottom and top of the
whole multilayered structure, and

[P] = ;=X [P;

a4

1.5

140

(22) ]

aom

(23)

with N being the total number of layers in the structure
(note that[P] is a 4 x 4 matrix). Equation (22) standsFig. 2. Brillouin diagram for propagating modes in an homogeneous bi-
for an homogeneous linear system of four equations wilgptropic lossless and reciprocal closed waveguigiestands for the phase

. onstant,Q) = wh. /i€, e, = 1.14212, u,» = 1, & = —350.37699, and
eight unknowns, namely, the transversal components of {fig thore e }: results in€[15]-)( s

= 3 = —¢. The authors’ results: (
electromagnetic fields at the top and bottom of the guide . The

authors can add the four remaining equations including the .
relation between the electric and magnetic transversal fiekQrcing the above homogeneous system to have solutions

given by the 2x 2 impedance matrifZ] provides the dispersion relation of the guide

E, = [Z] - H;.

(24) det[M(ks, k-, w)] =0 (28)

This equation holds for both the bottom and top transvers#ith [M] being the 2x 2 coefficient matrix of (27).

fields of the structure, so four more equations are available/n practice, and since there is not always cylindrical sym-
together with the four previous ones presented in (22). In tHRetry, the authors have assumed a propagation direction along
work, the authors will consider only two possible situations fdhe z-axis and, therefore, a propagation constent= 3. +

the impedance matrix: a perfect electric wall and a boundatg-- Any fixed external direction (for example, the biasing

with vacuum. In the first case, the impedance matrix is tirection) is then referred to the propagation direction after

can be easily obtained from the Maxwell's equations or integral methods because the functidet[M (k.. k., w)]

(25) .
structures, they could not develop the usual analytical treat-

k3 — k2 — k2. It should be noted that the sign of the

Combining (22) and the impedance relations, the followi the authors can readily identify the main features of the fields
E,  vector via the impedance matifi£] 5. Once these vectors
[Pl21(Z]5 + [Pl22

(26)

null matrix, while in the second one, the vacuum impedand®@pPosingk, = 0. The searching for the zeros of (28) can be
matrix (considering the spatial dependence of the fields in ($ficiently performed by means of any of the usual differential
s o does not have any pole [24].
Ep| _ 1 | —kek. —kj+k3||He Since the authors’ aim has been to deal with very general
Ez w€0]€y If% - k'g kxkz Hz
where ko is the vacuum wavenumber and: ment found in previous works dealing with specific structures.
0 Y Thus, the authors have presented a systematic numerical
imaginary part of, determines the proper/improper naturéCheme. to compute the dl.spers_,lon relation of'the p'af‘ar
of the modes [29] waveguides. However, despite this lack of analytical details,
. . nl%/ numerically computing them. For this purpose, the authors
linear homogeneous system can be obtained: can compute the eigenvectH; g of (27) and then obtain the
(Plu1[Z]s + [Pli2 —[Z]r | |Hys | _ |0
-1 ||H,z7| |O are computed, the transversal components of the fields at any
interface are calculated using the transition matr{€gs. The
where[P]; ; stands for any of the % 2 boxes of the 4x 4
matrix [P], [I] is the 2 x 2 unit matrix, and0 is the two-

y-components of the fields can also be readily computed via
(9) and (10).

components null vector. Equivalently, the authors can express

the 4 x 4 eigensystem (26) as

{[Pl,1[Z]s + [Pli2 = [Z]7([Pl21[Z] B + [Pl22)} - He B
—o. 27)

I1l. NUMERICAL EXAMPLES

Following the scheme showed in the previous section, the
authors have developed a computer code to compute the
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Fig. 3. Dispersion diagram for (a) the normalized phase congténi, and Fig. 4. Dispersion diagram for (a) the normalized phase constants and (b) the
(b) for the normalized attenuation constantko, corresponding to the proper normalized attenuation constants of the proper mode # 2 and its corresponding
and improper modes in the biisotropic lossless reciprocal open waveguidgroper mode. The waveguide is shown in Fig. 3(b), but assuming now a

shown in Fig. 3(b). The authors’ results: ( ) proper moges; .- ——) conductivity o = 0.0001 S/mm: ( ) proper mode,{ — - - ——)
improper modes; data in [18]e). Relative permittivityc, = 9, relative improper mode.
permeabilityy.,, = 1, chirality parameters,, = 1 = —j0.5; A stands for

the vacuum wavelengtlk, stands for the vacuum wavenumber.
the authors have also found a mode of zero cutoff frequency

dispersion relation and fields of the aforementioned genefabmely, the dominant mode of the chirowaveguide) and an
planar waveguides. The authors have carefully checked th&inall region of modal degeneracy at the onset of higher modes.
results with previous data reported by other authors. All the modes of this chiral structure (including the dominant
First, the authors analyze a parallel-plate chirowaveguidae) are hybrid [12], although as the chirality admittance goes
filled with an homogeneous biisotropic reciprocal and lossle&s zero the dominant mode turns into a TEM mode and the
medium. The results of the authors’ analysis, together witkmaining modes become E-modes or H-modes.
those reported in [15], are plotted in Fig. 2, showing an As a second example, Fig. 3(a) and (b) show the authors’
excellent agreement. It is interesting to note that as in [1%nalysis of the same grounded chiroslabguide previously stud-
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Fig. 5. Normalized phase constant for the fundamental mode of the wave-
guide shown in Fig. 3(b) for different values of the permittivity and the

parameter of chirality. Chiral case: (——), nonchiral case) In the chiral — .
casee, = 9 for all the different values of,, = 7. In this figure,&, is a ] EI’ =05 X
negative, imaginary quantity. Er =0

ied in [18] (the waveguide is shown in Fig. 3(b)). As for | Er=
the dispersion relation of the surface modes, the authors have
found an excellent agreement with the data of Fig. 3(a) in 4
[18], but in addition, the authors have plotted the propagation2*
constants for some improper real and complex modes. It cang
be seen in Fig. 3(a) and (b) that each higher-surface mode . 3
becomes a real improper mode at a certain frequency, often 1 S Y
denoted as the cutoff frequency. As usual, in nonchiral open 1 " E=0
guides [24], [30], as the frequency decreases this improper real ] '7:_._ E =05
mode joins together with another improper real mode to yield ] Er=1
a pair of complex conjugate improper modes (the so-called | ool -
leaky modes). ,)// §r=15

The authors have also studied the behavior of the quasi- L R
0.00 05 10 15

modes when conductivity losses are assumed in the substrate
(¢ = 0.0001 S/mm). For clarity, the authors only consider the t/ g

behavior of a pair of modes: the second quasi-mode and its ()

corresponding |mpr9per mode. The beha\”or of the ”Orma,“ZE%. 6. Dispersion diagram for (a) the normalized phase constant and (b) the
phase and attenuation constants for this case are shown in kégmalized attenuation constant of the second higher mode of the waveguide
4(a) and (b), respectively. It can be seen in Fig. 4(a) that &wwn in Fig. 3(b) for different values of the chirality parameter.= 9
frequency decreases, the proper complex mode (that is, f .g.g"?m?r;pg ﬂgégi'd'ﬁerem values ot = n;: (—) proper modes,
perturbed surface mode due to the substrate losses) turns into

an improper complex mode #t/ky, = 1. At this very point,

the attenuation constant (see Fig. 4(b)), which was negativie lossless case. It should be noted that this latter effect also
gets null to later take large positive values as frequency keefispears in nonchiral waveguides.

on decreasing. The corresponding improper mode presentslext, and similar to [18], the authors have studied the
negative values of the attenuation constant for all of the rangsshavior of the fundamental surface mode of the lossless
of frequencies shown in Fig. 4(b). Note that the behavior gfounded chiroslab as a function of the chirality in Fig. 5.
the phase constants of both the proper and improper modeS$th& curves of this figure show that the chirality significantly
similar to that corresponding to the lossless case, but now thiéects the phase constant of this mode (specifically, the higher
presence of losses preclude the modes from joining togetitee chirality, the slower the wave). The chirality parameter
to form a pair of improper complex conjugate modes as tould then be used as another variable to control the modal
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example, similar values of the phase velocity are obtained
using ¢, = 20 in a nonchiral waveguide or using. = 9
and&,. = —j1.5 in the chiral waveguide. Thus, regarding the
fundamental mode, the use of chiral materials could be an
alternative to the use of high permittivity substrates.

In completing the above study, the authors have also con-
sidered the effect of the increase of the chirality parameters
on the higher modes in Fig. 6(a) and (b). Fig. 6(a) shows the
behavior of the normalized phase constant of the second higher
proper mode (mode #2 in Fig. 3(a)) and its corresponding
improper mode for different values of the chiral parameter
including the nonchiral case. As can be seen in this figure,
the increasing of the chirality in the considered range does not
provide a qualitative behavior essentially different from that
corresponding to the nonchiral case. Thus, as in the nonchiral
case, the proper real mode becomes an improper real mode at
B/ko = 1 to later meet its corresponding improper mode, thus
yielding a leaky mode. It is also interesting to note that the

B/ko

cutoff frequency does not seem to be affected by the increasing
freq (GHz) of the chirality. The behavior of the attenuation constant is
(@) plotted in Fig. 6(b), showing newly similar features to those

of the nonchiral case.

Finally, the authors present an example of a complex
multilayered waveguide in order to show the possibilities of
the present method for studying the potential applications
of any kind of chiral composite materials. Specifically, the
authors have chosen a grounded waveguide composed of
three layers with different electric and magnetic properties
(see Fig. 7(b)). The bottom layer is a fully saturated ferrite
externally biased by a magnetic field; the second layer is a
semi-conductor biased by the above-mentioned magnetic field
and the top layer is an anisotropic lossless nonreciprocal chiral
material. In Fig. 7(a) and (b), the authors have plotted the
dispersion diagram for the phase and attenuation constants
respectively assuming a forward propagatierz); a similar
dispersion diagram is found, but not shown, for backward
propagation. The authors have considered both proper and
improper modes ranging from 0 to 30 GHz. As can be seen
in these Fig. 7(a) and (b), the behavior of the phase and
attenuation constants for the different modes are similar to
that shown in the previous examples. Similar to the second
freq (GHz) example in the lossy case, the losses in the plasma prevent the
®) appearance of pairs of improper complex conjugate modes.

Fig. 7. Dispersion diagram for (a) the normalized phase constants and
(b) the normalized attenuation constants of the proper and improper modes
propagating along the positive-direction in the three-layered bianisotropic IV. CONCLUSION

oo iR Shoun I 10 iU, DmEnsoh” M in this paper, the authors have presented a simple and
Plasma:Hy = 900 Oe, e, = 1, n = 10 m=3, + = 10-12 s, Systematic technique for studying general multilayered chiral
m* = 0.06678me, pr = 1; Biasing magnetic-field directiors = 452, waveguides based on the transition matrix approach. The
?:f&' Fofsf'fss:bf‘g'goirqg'%"'ZY‘?‘;IO 4(’;'”;5:')1}5215(:53&%{12'?& method of analysis is mainly numerical and reduces the
the transposed and cohjugétéa’gof” I determination of the modal propagation constants for the chiral
waveguide to the computation of the zeros of the determinant
phase velocity of these structures. The authors have atfoa 2 x 2 matrix. One of the advantages of the presented
plotted in Fig. 5 the behavior of the fundamental mode facheme is that the number of layers in the waveguide, and
different values of the dielectric permittivity, but assumingts possible complexity hardly affects its whole performance
now ¢ = n = 0 (nonchiral case). As can be seen in Fig. 5, it iand efficiency. Despite the method being basically numerical,
possible to obtain similar phase velocities by either increasitiye values and main features of the electromagnetic field are

the chirality or using high dielectric permittivity media. Foreadily determined.
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The examples considered have been focussed on the anal- a chiral slab,"Microwave Opt. Technol. Lettvol. 6, pp. 806-809, Nov.
ysis of waveguides with chiral (biiso/bianisotropic) material%L ]
In this way, the results obtained using the present meth &
have been checked with those reported by others authors
for biisotropic closed and open waveguides, showing a toﬁ!a]
agreement. All the examples of open chiral waveguides have
been completed, including the dispersion of the improper
modes. For the analyzed ranges of the chirality parameters[,l?c]

has been found that the proper and improper modes behave in

a similar way to that exhibited in the nonchiral case, althoud?0l

the

propagation characteristics. The authors have also studied the

chirality would provide another parameter to control th 1]

effects of substrate losses in the dispersion relation of a chi{ |
waveguides, equally finding that these effects are similar to

the

nonchiral cases. The study of the fundamental mode of

a biisotropic waveguide, when increasing either the dielectrie’]
permittivity or the chiral parameter, has showed that chiral
materials could be used as an alternative to high permittivit3#]
substrates.

Finally, the authors have considered the analysis of [25]
complex three-layer open waveguide. As in the previous

examples, the behavior of the proper and improper modes hé%/%

been considered and was found to be qualitatively similar to

that corresponding to nonchiral cases.
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