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Computation of Propagation Characteristics
of Chiral Layered Waveguides
Gonzalo Plaza, Francisco Mesa, and Manuel Horno,Member, IEEE

Abstract—In this paper the authors present a systematic nu-
merical method to analyze multilayered linear chiral waveguides.
The Maxwell’s equations are solved inside each layer and the
transversal fields at the top and bottom of the whole layered
medium are then related. This relation, together with the use
of the proper transversal impedance matrices, makes it possible
to obtain the dispersion relation of the waveguide. Since this
technique is mainly numerical, the whole procedure is practically
independent of both the number of layer and linear properties
of the materials. In addition to the proper modes, the authors
also show the behavior of the improper leaky modes of different
chiral waveguides. In all the analyzed cases and for the considered
ranges, the authors have found that the presence of chiral
material does not substantially change the qualitative behavior
of the dispersion relation, although it offers another parameter
to control the propagation characteristics of the waveguide.

Index Terms—Chiral, spectral domain, planar wageguide.

I. INTRODUCTION

I N THE PAST few years, the attention paid to the study
of electromagnetic propagation in biisotropic and bian-

isotropic chiral media has increased notably. This increasing
interest is raised by the potential applications of the chiral
material as well as its theoretical and academic significance.
As is well known, a chiral object is one that cannot be brought
into congruence with its mirror image by translation or rotation
[1]. A collection of such objects is then characterized by right
or left handedness and, therefore, chirality means a lack of
bilateral symmetry. The most outstanding properties of chiral
media concerning the propagation of electromagnetic fields are
reported to be their ability either for rotating the plane of po-
larization of an electromagnetic wave or for circular dichroism
[2]. Although today there are no known natural media showing
chiral properties at microwave and millimeter frequencies, the
progress in the polymers science is expected to make these
media of common use in future technology (currently, these
media are manufactured by embedding polymers with chiral
structure into a host dielectric media) [1], [3]. In this event,
many of the proposed devices whose performance lies on the
chiral properties of the media could be built. A general survey
of chiral devices is reported in [3].

The electromagnetic propagation in chiral materials has
been extensively studied in the literature. General features on
the bi(iso/ani)sotropic materials are presented in [4], [5] and
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different aspects about electromagnetic propagation in homo-
geneous unbounded bi(iso/ani)sotropic media are considered
in [6]–[11]. Propagation along closed waveguides homoge-
neously filled with biisotropic materials has been consid-
ered for example in [12], [13]–[14]; parallel-plate waveguides
homogeneously filled with biisotropic material are treated
in [15] and inhomogeneously filled with these media in
[16], [17]; open chiroslab waveguides are studied in [18],
[19]. In [20]–[22] waveguides with isotropic chiral materials
and gyrotropic properties (chiroferrites and chiroplasmas) are
considered. A microstrip on a biisotropic substrate is analyzed
in [23].

In this paper, the authors propose a systematic quasi-
numerical method to analyze general laterally open
waveguides with layered media whose layers can exhibit linear
bianisotropic properties without restriction. One of the main
features of the method presented here is that the increasing
of the number of layers, as well as its complexity, hardly
affects its efficiency. Here, the technique of analysis used
follows the guidelines presented in [24], although the present
work is now specifically focussed on the analysis of general
layered chiral waveguides, including some novel structures
combining gyrotropic and chiral anisotropic properties. The
propagation characteristics of the different structures are
computed following a 4 4 transition matrix scheme to
solve the Maxwell’s equations inside the bianisotropic layers.
This scheme has been used often in the past [24]–[27] as it
has been shown to be very suitable in dealing with general
anisotropic materials.

Finally, the authors present the propagation characteristics
of some types of chiral waveguides. Specifically, the authors
have analyzed the behavior of the propagation constants when
some characteristic parameters are varied. The authors’ study
has shown that the influence of the chirality parameters on the
waveguide characteristics in the analyzed range is similar to
that provided by the usual varying of the dielectric permittivity
or magnetic permeability. This study is extended to both the
proper and improper modes of the chiral waveguides.

II. A NALYSIS

In this section, the authors present the theoretical treatment
to analyze the planar multilayered waveguide shown in Fig.
1. Since the authors’ aim is to develop as general an analysis
as possible, each substrate in the above structure is assumed
to show linear bianisotropic electromagnetic properties, and
the top and bottom waveguide interfaces can be any of
those susceptible to being implemented by impedance matrices
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Fig. 1. Multilayered waveguide including general bianisotropic materials.

(i.e., electric/magnetic walls, vacuum medium, periodically
loaded interfaces, ). One of the possible ways of writing
the constitutive relations for the most general bianisotropic
medium is given in [27], [28]:

(1)

(2)

where , and are the relative dyadic
permittivity and permeability, and and are the cross-
coupling dyads accounting for the chirality of the substrate
(note that these four dyads are dimensionless and that care
must be taken concerning the physical meaning of[4], [29]).

The following time and spatial harmonic dependence are
assumed for the electromagnetic fields

(3)

although, the explicit time dependence will be suppressed
throughout.

Using the constitutive relations (1)–(2), the Maxwell’s equa-
tions for the curls inside each layer are

(4)

(5)

In view of the spatial dependence shown in (3), the
operator can be expressed in matricial form as

(6)

Using this operator, the second and fifth row equations in the
set (4)–(5) can be written as

(7)

(8)

where and are defined as follows:

where , , and stand for the unit vectors along the
cartesian axes. Similar expressions hold forand .

Since expressions (7) and (8) are algebraic, bothand
can be expressed in terms of the remaining components of the
fields in the following way:

(9)

(10)

where (subscript
means transversal to-direction), and and are given by

(11)

(12)

with and .
Similar expressions hold for , , and . and
stand for the dual of the and , respectively; that is, their
expressions can be obtained directly from (11) and (12) using
the dual relations [6]

(13)

Substituting (9) and (10) into the remaining row of Maxwell’s
equations in (4)–(5), the following matrix differential equation
is obtained for the transversal fields:

(14)

where

(15)

(16)

(17)

(18)

Note that is a 4 4 matrix. The corresponding dual
expressions for and arrays, denoted with superscript,
can be obtained from (15)–(18) by means of (13) and the
additional dual relations

(19)

After solving the matrix differential equation (14), the
transversal fields at the top of theth layer can be written as
a function of the transversal fields at the bottom of this layer:

(20)

where subscripts and indicate bottom and top, respec-
tively, and the matrix is given by

(21)
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with being the height of the layer [24]. A similar study
for computing the transition matrix , but in a different
context, is presented in [27].

In order to find the dispersion equation for the waveguide,
and considering that the transversal fields must be continuous
at the interfaces, (20) is applied repeatedly starting from the
bottom layer of the multilayered structure up to the upper layer.
Although the following mathematical steps were partially
exposed in [24], the authors will detail some of them for the
sake of completeness. In this way, the top transversal field
of the guide can be related to the bottom transversal field as
follows:

(22)

where subscripts and now means bottom and top of the
whole multilayered structure, and

(23)

with being the total number of layers in the structure
(note that is a 4 4 matrix). Equation (22) stands
for an homogeneous linear system of four equations with
eight unknowns, namely, the transversal components of the
electromagnetic fields at the top and bottom of the guide . The
authors can add the four remaining equations including the
relation between the electric and magnetic transversal fields
given by the 2 2 impedance matrix

(24)

This equation holds for both the bottom and top transversal
fields of the structure, so four more equations are available
together with the four previous ones presented in (22). In this
work, the authors will consider only two possible situations for
the impedance matrix: a perfect electric wall and a boundary
with vacuum. In the first case, the impedance matrix is the
null matrix, while in the second one, the vacuum impedance
matrix (considering the spatial dependence of the fields in (3))
can be easily obtained from the Maxwell’s equations

(25)

where is the vacuum wavenumber and
. It should be noted that the sign of the

imaginary part of determines the proper/improper nature
of the modes [29].

Combining (22) and the impedance relations, the following
linear homogeneous system can be obtained:

(26)

where stands for any of the 2 2 boxes of the 4 4
matrix , is the 2 2 unit matrix, and is the two-
components null vector. Equivalently, the authors can express
the 4 4 eigensystem (26) as

(27)

Fig. 2. Brillouin diagram for propagating modes in an homogeneous bi-
isotropic lossless and reciprocal closed waveguide.� stands for the phase
constant,
 = !h

p
��, �r = 1:14212, �r = 1, �r = �j0:37699, and

� = ��. The authors’ results: (——–); results in [15]: (�).

Forcing the above homogeneous system to have solutions
provides the dispersion relation of the guide

(28)

with being the 2 2 coefficient matrix of (27).
In practice, and since there is not always cylindrical sym-

metry, the authors have assumed a propagation direction along
the -axis and, therefore, a propagation constant

. Any fixed external direction (for example, the biasing
direction) is then referred to the propagation direction after
imposing . The searching for the zeros of (28) can be
efficiently performed by means of any of the usual differential
or integral methods because the function
does not have any pole [24].

Since the authors’ aim has been to deal with very general
structures, they could not develop the usual analytical treat-
ment found in previous works dealing with specific structures.
Thus, the authors have presented a systematic numerical
scheme to compute the dispersion relation of the planar
waveguides. However, despite this lack of analytical details,
the authors can readily identify the main features of the fields
by numerically computing them. For this purpose, the authors
can compute the eigenvector of (27) and then obtain the

vector via the impedance matrix . Once these vectors
are computed, the transversal components of the fields at any
interface are calculated using the transition matrices. The
-components of the fields can also be readily computed via

(9) and (10).

III. N UMERICAL EXAMPLES

Following the scheme showed in the previous section, the
authors have developed a computer code to compute the
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(a)

(b)

Fig. 3. Dispersion diagram for (a) the normalized phase constant�=k0, and
(b) for the normalized attenuation constant�=k0, corresponding to the proper
and improper modes in the biisotropic lossless reciprocal open waveguide
shown in Fig. 3(b). The authors’ results: (——–) proper modes,(�� �� ��)
improper modes; data in [18]: (�). Relative permittivity"r = 9, relative
permeability�r = 1, chirality parameters�r = ��

r
= �j0:5; �0 stands for

the vacuum wavelength,k0 stands for the vacuum wavenumber.

dispersion relation and fields of the aforementioned general
planar waveguides. The authors have carefully checked their
results with previous data reported by other authors.

First, the authors analyze a parallel-plate chirowaveguide
filled with an homogeneous biisotropic reciprocal and lossless
medium. The results of the authors’ analysis, together with
those reported in [15], are plotted in Fig. 2, showing an
excellent agreement. It is interesting to note that as in [15],

(a)

(b)

Fig. 4. Dispersion diagram for (a) the normalized phase constants and (b) the
normalized attenuation constants of the proper mode # 2 and its corresponding
improper mode. The waveguide is shown in Fig. 3(b), but assuming now a
conductivity � = 0:0001 S/mm: (——–) proper mode, (� � � � ��)
improper mode.

the authors have also found a mode of zero cutoff frequency
(namely, the dominant mode of the chirowaveguide) and an
small region of modal degeneracy at the onset of higher modes.
All the modes of this chiral structure (including the dominant
one) are hybrid [12], although as the chirality admittance goes
to zero the dominant mode turns into a TEM mode and the
remaining modes become E-modes or H-modes.

As a second example, Fig. 3(a) and (b) show the authors’
analysis of the same grounded chiroslabguide previously stud-
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Fig. 5. Normalized phase constant for the fundamental mode of the wave-
guide shown in Fig. 3(b) for different values of the permittivity and the
parameter of chirality. Chiral case: (——), nonchiral case (� � �). In the chiral
case�r = 9 for all the different values of�r = �

�

r
. In this figure,�r is a

negative, imaginary quantity.

ied in [18] (the waveguide is shown in Fig. 3(b)). As for
the dispersion relation of the surface modes, the authors have
found an excellent agreement with the data of Fig. 3(a) in
[18], but in addition, the authors have plotted the propagation
constants for some improper real and complex modes. It can
be seen in Fig. 3(a) and (b) that each higher-surface mode
becomes a real improper mode at a certain frequency, often
denoted as the cutoff frequency. As usual, in nonchiral open
guides [24], [30], as the frequency decreases this improper real
mode joins together with another improper real mode to yield
a pair of complex conjugate improper modes (the so-called
leaky modes).

The authors have also studied the behavior of the quasi-
modes when conductivity losses are assumed in the substrate
( S/mm). For clarity, the authors only consider the
behavior of a pair of modes: the second quasi-mode and its
corresponding improper mode. The behavior of the normalized
phase and attenuation constants for this case are shown in Fig.
4(a) and (b), respectively. It can be seen in Fig. 4(a) that as
frequency decreases, the proper complex mode (that is, the
perturbed surface mode due to the substrate losses) turns into
an improper complex mode at . At this very point,
the attenuation constant (see Fig. 4(b)), which was negative,
gets null to later take large positive values as frequency keeps
on decreasing. The corresponding improper mode presents
negative values of the attenuation constant for all of the ranges
of frequencies shown in Fig. 4(b). Note that the behavior of
the phase constants of both the proper and improper modes is
similar to that corresponding to the lossless case, but now the
presence of losses preclude the modes from joining together
to form a pair of improper complex conjugate modes as in

(a)

(b)

Fig. 6. Dispersion diagram for (a) the normalized phase constant and (b) the
normalized attenuation constant of the second higher mode of the waveguide
shown in Fig. 3(b) for different values of the chirality parameter.�r = 9

and�r = 1 for all the different values of�r = �
�

r
: (——) proper modes,

(� � �) improper modes.

the lossless case. It should be noted that this latter effect also
appears in nonchiral waveguides.

Next, and similar to [18], the authors have studied the
behavior of the fundamental surface mode of the lossless
grounded chiroslab as a function of the chirality in Fig. 5.
The curves of this figure show that the chirality significantly
affects the phase constant of this mode (specifically, the higher
the chirality, the slower the wave). The chirality parameter
could then be used as another variable to control the modal
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(a)

(b)

Fig. 7. Dispersion diagram for (a) the normalized phase constants and
(b) the normalized attenuation constants of the proper and improper modes
propagating along the positivez-direction in the three-layered bianisotropic
nonreciprocal waveguide shown in Fig. 7(b). Dimensions:h = 5 mm.
Lossless fully-saturated ferrite:H0 = 900 Oe, 4�Ms = 750 G, �r = 1;
Plasma:H0 = 900 Oe, �r = 1, n = 1015 m�3, � = 10�12 s,
m� = 0:06678me, �r = 1; Biasing magnetic-field direction:� = 450,
� = 450; Lossless bianisotropic layer:�r = 4; �r = 1, �r;xx = 0:1� j0:5,
�yy = �xx, �r;zz = �0:2� j0:3, �ij = 0 (i 6= j), �� = ��y (��y stands for
the transposed and conjugated of��).

phase velocity of these structures. The authors have also
plotted in Fig. 5 the behavior of the fundamental mode for
different values of the dielectric permittivity, but assuming
now (nonchiral case). As can be seen in Fig. 5, it is
possible to obtain similar phase velocities by either increasing
the chirality or using high dielectric permittivity media. For

example, similar values of the phase velocity are obtained
using in a nonchiral waveguide or using
and in the chiral waveguide. Thus, regarding the
fundamental mode, the use of chiral materials could be an
alternative to the use of high permittivity substrates.

In completing the above study, the authors have also con-
sidered the effect of the increase of the chirality parameters
on the higher modes in Fig. 6(a) and (b). Fig. 6(a) shows the
behavior of the normalized phase constant of the second higher
proper mode (mode #2 in Fig. 3(a)) and its corresponding
improper mode for different values of the chiral parameter,
including the nonchiral case. As can be seen in this figure,
the increasing of the chirality in the considered range does not
provide a qualitative behavior essentially different from that
corresponding to the nonchiral case. Thus, as in the nonchiral
case, the proper real mode becomes an improper real mode at

to later meet its corresponding improper mode, thus
yielding a leaky mode. It is also interesting to note that the
cutoff frequency does not seem to be affected by the increasing
of the chirality. The behavior of the attenuation constant is
plotted in Fig. 6(b), showing newly similar features to those
of the nonchiral case.

Finally, the authors present an example of a complex
multilayered waveguide in order to show the possibilities of
the present method for studying the potential applications
of any kind of chiral composite materials. Specifically, the
authors have chosen a grounded waveguide composed of
three layers with different electric and magnetic properties
(see Fig. 7(b)). The bottom layer is a fully saturated ferrite
externally biased by a magnetic field; the second layer is a
semi-conductor biased by the above-mentioned magnetic field
and the top layer is an anisotropic lossless nonreciprocal chiral
material. In Fig. 7(a) and (b), the authors have plotted the
dispersion diagram for the phase and attenuation constants
respectively assuming a forward propagation ; a similar
dispersion diagram is found, but not shown, for backward
propagation. The authors have considered both proper and
improper modes ranging from 0 to 30 GHz. As can be seen
in these Fig. 7(a) and (b), the behavior of the phase and
attenuation constants for the different modes are similar to
that shown in the previous examples. Similar to the second
example in the lossy case, the losses in the plasma prevent the
appearance of pairs of improper complex conjugate modes.

IV. CONCLUSION

In this paper, the authors have presented a simple and
systematic technique for studying general multilayered chiral
waveguides based on the transition matrix approach. The
method of analysis is mainly numerical and reduces the
determination of the modal propagation constants for the chiral
waveguide to the computation of the zeros of the determinant
of a 2 2 matrix. One of the advantages of the presented
scheme is that the number of layers in the waveguide, and
its possible complexity hardly affects its whole performance
and efficiency. Despite the method being basically numerical,
the values and main features of the electromagnetic field are
readily determined.
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The examples considered have been focussed on the anal-
ysis of waveguides with chiral (biiso/bianisotropic) materials.
In this way, the results obtained using the present method
have been checked with those reported by others authors
for biisotropic closed and open waveguides, showing a total
agreement. All the examples of open chiral waveguides have
been completed, including the dispersion of the improper
modes. For the analyzed ranges of the chirality parameters, it
has been found that the proper and improper modes behave in
a similar way to that exhibited in the nonchiral case, although
the chirality would provide another parameter to control the
propagation characteristics. The authors have also studied the
effects of substrate losses in the dispersion relation of a chiral
waveguides, equally finding that these effects are similar to
the nonchiral cases. The study of the fundamental mode of
a biisotropic waveguide, when increasing either the dielectric
permittivity or the chiral parameter, has showed that chiral
materials could be used as an alternative to high permittivity
substrates.

Finally, the authors have considered the analysis of a
complex three-layer open waveguide. As in the previous
examples, the behavior of the proper and improper modes have
been considered and was found to be qualitatively similar to
that corresponding to nonchiral cases.

REFERENCES

[1] D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic
waves in chiral media,”Appl. Phys., vol. 18, pp. 211–216, 1979.

[2] K. W. Whites, “Full-wave computation of constitutive parameters for
lossless composite chiral materials,”IEEE Trans. Antennas Propagat.,
vol. 43, pp. 376–384, Apr. 1995.

[3] H. Cory, “Chiral devices—An overview of canonical problems,”J.
Electro. Waves Applicat., vol. 9, pp. 805–829, 1995.

[4] A. H. Sihvola and I. V. Lindell, “Biisotropic constitutive relations,”
Microwave Opt. Technol. Lett., vol. 4, pp. 295–297, 1991.

[5] A. H. Sihvola, “Are nonreciprocal biisotropic media forbidden indeed?,”
IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2160–2162, Sept.
1995.

[6] J. C. Monzon, “Radiation and scattering in homogeneous general
biisotropic regions,” IEEE Trans. Antennas Propagat., vol. 38, pp.
227–235, Feb. 1990.

[7] R. D. Graglia, P. L. E. Uslenghi, and R. E. Zich, “Dispersion relation
for bianisotropic materials and its symmetry properties,”IEEE Trans.
Antennas Propagat., vol. 39, pp. 83–90, Jan. 1991.

[8] N. Engheta, D. L. Jaggard, and M. W. Kowarz, “Electromagnetic waves
in faraday chiral media,”IEEE Trans. Antennas Propagat., vol. 40, pp.
367–373, Apr. 1992.

[9] A. Lakhtakia and W. S. Weiglhofer, “Axial propagation in general
helicoidal bianisotropic media,”Microwave Opt. Technol. Lett., vol. 6,
pp. 804–806, Nov. 1993.

[10] C. M. Krowne, “Electromagnetic properties of nonreciprocal composite
chiral-ferrite media,” IEEE Trans. Antennas Propagat., vol. 9, pp.
1289–1295, Sept. 1993.

[11] I. V. Lindell and F. Olyslager, “Duality transformations, green dyadics
and plane-wave solutions for a class of bianisotropic media,”J. Electro.
Waves Applicat., vol. 9, pp. 85–96, 1995.

[12] P. Pelet and N. Engheta, “The theory of chirowaveguides,”IEEE Trans.
Antennas Propagat., vol. 38, pp. 90–98, Jan. 1990.

[13] N. Engheta and P. Pelet, “Mode orthogonality in chirowaveguides,”
IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1631–1634, Nov.
1990.

[14] H. Cory, “Wave propagation along a closed rectangular
chirowaveguide,”Microwave Opt. Technol. Lett., vol. 6, pp. 797–800,
Nov. 1993.

[15] L. Zhang, Y. Jiao, and C. Liang, “The dominant mode in a parallel-
plate chirowaveguide,”IEEE Trans. Microwave Theory Tech., vol. 42,
pp. 2009–2012, Oct. 1994.

[16] A. Toscano and L. Vegni, “Effects of chirality admittance on the
propagating modes in a parallel-plate waveguide partially filled with

a chiral slab,”Microwave Opt. Technol. Lett., vol. 6, pp. 806–809, Nov.
1993.

[17] F. Mariotte and N. Engheta, “Reflection and transmission of guided
electromagnetic waves at an air-chiral interface and at a chiral slab in
a parallel-plate waveguide,”IEEE Trans. Microwave Theory Tech., vol.
11, pp. 1895–1906, Nov. 1993.

[18] C. R. Paiva and A. M. Barbosa, “A method for the analysis of biisotropic
planar waveguides—Application to a grounded chiroslabguide,”Elec-
tromagnetics, vol. 11, pp. 209–221, 1991.

[19] I. V. Lindell, “Variational method for the analysis of lossless bi-isotropic
(nonreciprocal chiral) waveguides,”IEEE Trans. Microwave Theory
Tech., vol. 40, pp. 402–405, Feb. 1992.

[20] Z. Shen, “The theory of chiroferrite waveguides,”Microwave Opt.
Technol. Lett., vol. 6, pp. 397–401, June 1993.

[21] Y. Wenyan and L. Pao, “The analysis of propagation characteristics
in planar gyrotropic chirowaveguides,”Microwave Opt. Technol. Lett.,
vol. 6, pp. 684–689, Sept. 1993.

[22] Y. Wenyan, W. Wenbing, and L. Pao, “Guided electromagnetic waves
in gyrotropic chirowaveguides,”IEEE Trans. Microwave Theory Tech.,
vol. 42, pp. 2156–2163, Nov. 1994.

[23] M. S. Kluskens and E. H. Newman, “A microstrip line on a chiral sub-
strate,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1889–1891,
Nov. 1991.

[24] F. Mesa and M. Horno, “Computation of proper and improper modes in
multilayered bianistropic waveguides,”IEEE Trans. Microwave Theory
Tech., vol. 43, pp. 233–235, Jan. 1995.

[25] L. B. Felsen and N. Marcuvitz.Radiation and Scattering of Waves.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[26] C. M. Krowne, “Fourier transformed matrix method of finding propaga-
tion characteristics of complex anistropic layered media,”IEEE Trans.
Microwave Theory Tech., vol. 32, pp. 1617–1625, Dec. 1984.

[27] J. L. Tsalamengas, “Interaction of electromagnetic waves with general
bianisotropic slabs,”IEEE Trans. Microwave Theory Tech., vol. 40, pp.
1870–1878, Oct 1992.

[28] R. D. Graglia, P. L. E. Uslenghi, and R. E. Zich, “Reflection and trans-
mission for planar structures of bianistropic media,”Electromagnetics,
vol. 11, pp. 193–208, 1991.

[29] A. Ishimaru,Electromagnetic Wave Propagation, Radiation and Scatter-
ing, Englewood Cliffs, NJ: Prentice-Hall, 1991.

[30] C. G. Hsu, R. F. Harrington, J. R. Mautz, and T. P. Sarkar, “On the
location of leaky waves poles for a grounded dielectric slab,”IEEE
Trans. Microwave Theory Tech., vol. 39, pp. 346–349, Feb. 1991.

Gonzalo Plaza was born in Ćadiz, Spain, on
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